

Simulation of dynamic loads for marine vessels The AC75 class yacht – a case study

David Jonson

BAR Technologies

Presentation Agenda

General introduction to the Americas Cup Brief history of the AC The AC 75 yacht Loading

Dynamic loading analysis

Application to commercial vessels

David Jonson, BAR Technologies

Agenda

- <u>Step 1</u> Introduction to the America's Cup
- <u>Step 2</u> Fluid-Structure Interface Validation
- <u>Step 3</u> Preliminary Hull Studies
- <u>Step 4</u> Refined Hull Studies
- <u>Step 5</u> Bustle Optimisation

The America's Cup – a brief introduction

- The oldest international competition still operating in any sport (inception 1851)
- The competition is held approximately every three to four years
- The format of the competition is unique in that the rules are effectively reset after every event. This could mean:
 - change to the type of yacht used
 - new race location and conditions
 - new racing format and/or system of scoring
- Leveraging the latest technology has always been at the forefront of each AC campaign
- Rules limit design resources. The timeline limits time to test and develop the race yacht

The AC75 yacht – primary characteristics

- New class of yacht for the 2021 event
- Primary characteristics:
 - monohull
 - 75 ft long
 - total mass of 7.5t
 - 3 hydrofoils (2 main and one rudder)
- Double soft skin mainsail
- Capable of top speeds in excess of 50 knots (93 km/hr)
- Very efficient: boat speed > 2.5 x true wind speed

The AC75 yacht – how does it work?

The AC75 yacht - design and construction

The AC75 yacht - design and construction

- All primary structure constructed using composite materials
- Open design rule for the hull structure
 - minimum panel weight = 2kg/m²
 - limited structural testing required
- The primary structure is completely hand-built
- Strict mass budget
- Extensive use made of advanced analysis and simulation techniques

.

BELSTAFF

Highly optimised structure and laminates

Agenda

- <u>Step 1</u> Introduction to the America's Cup
- <u>Step 2</u> Fluid-Structure Interface Validation
- <u>Step 3</u> Preliminary Hull Studies
- <u>Step 4</u> Refined Hull Studies
- <u>Step 5</u> Bustle Optimisation

Dynamic loading - typical scenario "splash-down"

Dynamic loading - typical scenario "stuff"

Entry velocity ≈ 40 knots (75 km/hr)

Total mass ≈ 7.5 tons

Deceleration > 2.5g

Dynamic loading – analysis aims and methodology

- Aim:
 - To develop confidence in simulation results and prove out the structural concept for an AC75 yacht by:
 - simulating dynamic response and correlate predicated behaviour against real world data
 - understanding how to adjust model parameters to improve accuracy
 - use results as input into the design of the race yacht hull structure
- Methodology:
 - Phased approach:
 - First model to test feasibility by benchmarking an existing hull platform
 - Second model to consider the full platform hull structure
 - Third model to focus on a detailed analysis the bustle
 - In all cases an explicit solver was used employing fluid-structure interaction capability

FSI Interface Validation - Aims

- Develop the FSI model of the Yacht with the aim of
 - assessing the feasibility of constructing a model that is able to capture a slam type event
 - compare the predicted response with real world data
 - assessing the hull pressure distribution during water impact.

FSI Interface Validation Experimentation

• Drop test - comparing test performed to simulation.

Test

BAR

TECHNOLOGIES

FSI Interface Validation Experimentation

• Drop test - comparing test performed to simulation.

Agenda

- <u>Step 1</u> Introduction to the America's Cup
- <u>Step 2</u> Fluid-Structure Interface Validation
- <u>Step 3</u> Preliminary Hull Studies
- <u>Step 4</u> Refined Hull Studies
- <u>Step 5</u> Bustle Optimisation

Preliminary Studies Model Build and Setup Composite definitions were taken from existing NASTRAN model 3m/s Drop A constant flow of 35kt was applied to the water, while ٠ outer boundaries were constrained in appropriate DOF's. Air The yacht was set to impact the water at a vertical velocity of 3m/s. Water RAR **Front View** Side View TECHNOLOGIES 5° Roll 7° Pitch

Top View

5° Yaw

Preliminary Studies - animations of the yacht impacting the water.

Preliminary Studies Results - rotation and displacement of the yacht CoG

Preliminary Studies Model Results - hull pressure distribution

Preliminary Hull Studies Summary

- An FSI model was developed to simulate wave slam of an AC75 class yacht.
- Hull pressures were assessed, showing peaks of ~200KPa, however most areas experience pressure much below this value.
- The effect of hull stiffness to pressures suggest that although pressures reduce in some areas with a decrease in stiffness, the peak pressures found during initial impact do not change significantly.
- Certain parameters and modelling methods were found to be important for wave slam simulation in FSI.
 - Output of interface pressures varies significantly to nodal pressures.
 - Penalty factors help in achieving a smoother pressure propagation.
- Although there is confidence in the existing model, there was room to develop the model for improved accuracy.
 - Higher INTFOR file output frequency.
 - COG of the yacht did not perfectly match provided data.
 - Slight leakage was found during simulation. This is a numerical effect where a small percentage of fluid leaks through the hull surface interface.

Agenda

- <u>Step 1</u> Introduction to the America's Cup
- <u>Step 2</u> Fluid-Structure Interface Validation
- <u>Step 3</u> Preliminary Hull Studies
- <u>Step 4</u> Refined Hull Studies
- <u>Step 5</u> Bustle Optimisation

Refined Hull Studies Aims and model setup

- Extend the preliminary studies to:
 - Analyse the race yacht geometry
 - Include the mast and rigging

Refined Hull Study Results – Slam ISO View

Refined Hull Study - Results – Front View

Refined Hull Study - Results – Slam Side View

Refined Hull Study - Results – Hull Pressure

Agenda

- <u>Step 1</u> Introduction to the America's Cup
- <u>Step 2</u> Fluid-Structure Interface Validation
- <u>Step 3</u> Preliminary Hull Studies
- <u>Step 4</u> Refined Hull Studies
- <u>Step 5</u> Bustle Optimisation

Bustle Optimisation – aims and model setup

• Extend the previous work to assess the hull bustle in isolation and explore a series of design concepts which would best suit pressure management of the hull pressure.

Initial configuration

Stiffener configuration

Additional bulkhead configuration

Bustle Optimisation – Pressure Results – Initial Strain, Deceleration

Initial Design

Additional Bulkheads

Stiffener Design

Peak Pressure = 1.09MPa

Peak Pressure = 2.04MPa

Peak Pressure = 1.88MPa

Bustle Optimisation – Initial Strain, Deceleration

Initial Design

Additional Bulkheads

Stiffener Design

Bustle Optimisation – acceleration and reaction force

Bustle Optimisation – deceleration vs pitch angle

Longer time duration (200ms) due to larger pitch angle

Bustle Optimisation – deceleration versus roll angle

TECHNOLOGIES

Shorter time duration (60ms)

Bustle Optimisation – Maximum Deceleration

- Review of the maximum deceleration observed from each simulation highlights that both the pitch and roll angles have a very significant influence.
- Pitch is observed to have the strongest influence, which is to be expected.
- The angle of impact strongly governs the amount of bustle surface that impacts the water at the same time, therefore, controlling the instantaneous peak force applied.

TECHNOLOGIES

MPa Interface Pressure Time = 0.020001 Contours of Interface Pressure 8.000e-01 max=0.0294943, at elem# 4242 7.200e-01 6.400e-01 5.600e-01 4.800e-01 4.000e-01 3.200e-01 2.400e-01 1.600e-01 8.000e-02 0.000e+00 0° 0.5° 1° 5° 3° BAR TECHNOLOGIES

Bustle Optimisation – Pitch Sensitivity Pressure Animations

Application to commercial vessels

- BAR Technologies Crew Transfer Vessel (CTV)
 - Foil assisted efficient with enhanced stability (active roll control)
 - Proa concept non-traditional, minimal in-service experience/data
 - Enhanced seas keeping allows for higher speeds for given conditions than regular vessels
 - Weight reduction is a key driver
 - Limited choice of materials
 - Larger dynamic loads essential to understand the impact of these loads
 - Ideal opportunity to leverage advanced analysis techniques to develop a better understanding of the structural response

Conclusions

- The use of simulation for predicting the response of hull structure to highly dynamic loading was investigated
- The analysis methodology is computationally demanding and requires experimentation and time to develop confidence
- Ultimately it was found that the methodology provided valuable inputs into the design of the hull structure
- The approach was successfully used to design key aspects of INOES Team UK's race yacht for AC 36 enabling a light weight solution leading to the benefit of performance
- The methodology and learning are now being applied to commercial vessels to benefit new technologies leading to improved efficiency and performance

Thank You

BAR Technologies Ltd, The Camber, East Street, Portsmouth, Hampshire PO1 2JJ, United Kingdom t. +44 (0)2392 287814

bartechnologies.uk